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The fluctuating wall pressure and its gradients in the plane of the surface were
measured beneath the turbulent boundary layer that forms over the salt playa of
Utah’s west desert. Measurements were acquired under the condition of near-neutral
thermal stability to best mimic the canonical zero-pressure-gradient boundary-layer
flow. The Reynolds number (based on surface-layer thickness, δ, and the friction
velocity, uτ ) was estimated to be 1 × 106 ± 2 × 105. The equivalent sandgrain surface
roughness was estimated to be in the range 15 � k+

s � 85. Pressure measurements
acquired simultaneously from an array of up to ten microphones were analysed. A
compact array of four microphones was used to estimate the instantaneous streamwise
and spanwise gradients of the surface pressure. Owing to the large length scales and
low flow speeds, attaining accurate pressure statistics in the present flow required
sensors capable of measuring unusually low frequencies. The effects of imperfect
spatial and temporal resolution on the present measurements were also explored.
Relative to pressure, pressure gradients exhibit an enhanced sensitivity to spatial
resolution. Their accurate measurement does not, however, require fully capturing
the low frequencies that are inherent and significant in the pressure itself. The
present pressure spectra convincingly exhibit over three decades of approximately −1
slope. Comparisons with low-Reynolds-number data support previous predictions
that the inner normalized wall pressure variance increases logarithmically with
Reynolds number. The wall pressure autocorrelation exhibits its first zero-crossing
at an advected length that is between one tenth and one fifth of the surface-layer
thickness. Under any of the normalizations investigated, the present surface vorticity
flux intensity values are difficult to reconcile with low-Reynolds-number data trends.
Inner variables, however, do yield normalized flux intensity values that are of the same
order of magnitude at low and high Reynolds number. Spectra reveal that even at
high Reynolds number, the primary contributions to the pressure gradient intensities
occur over a relatively narrow frequency range. This frequency range is shown to be
consistent with the scale of the sublayer pocket motions. In accord with low-Reynolds-
number data, the streamwise pressure gradient signals at high Reynolds number are
also characterized by statistically significant pairings of opposing sign fluctuations.

1. Introduction
The objectives of this study are to explore the statistical properties of the wall

pressure fluctuations and their in-plane gradients beneath a high-Reynolds-number
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boundary layer. (The Reynolds number primarily employed herein is based upon the
boundary-layer thickness, δ, and the friction velocity, uτ =

√
τw/ρ, i.e. δ+ = δuτ/ν,

where ν is the kinematic viscosity.) Efforts to reveal the detailed nature of
high-Reynolds-number boundary-layer turbulence encounter a number of technical
challenges. Beyond those associated with actually generating a high δ+ boundary layer,
these challenges primarily relate to measuring the small scales and high frequencies
of the turbulent motions (e.g. DeGraaff & Eaton 2000; Metzger & Klewicki 2001).
This is because the most common way to achieve a high Reynolds number in the
laboratory is to operate at high speeds. Regarding wall pressure, additional challenges
are associated with the non-negligible acoustic noise and facility vibration typical of
even high-flow-quality wind tunnels. These complications often require considerable
data post-processing to extract reliable estimates of the true wall-pressure signal.
Similarly, the signal-to-noise ratios of wall-pressure signals are often not as high as
desired – especially for studies seeking to estimate derivatives. Thus, for example, even
theoretically ‘well-established’ features of the wall-pressure fluctuations, such as the
k−1 spectral range, are often difficult to convincingly verify experimentally, (Panton
1990).

There is a well-established theoretical foundation regarding the source of pressure
fluctuations within the boundary layer (e.g. Blake 1986). Physically, unsteady wall-
pressure signals arise from the weighted integral of the instantaneous motions internal
to the turbulent boundary layer (e.g. Eckelmann 1990). Understanding the nature and
origin of these pressure sources is central to applications associated, for example,
with the acoustic signature of submarines or high-speed aircraft. As it pertains to the
present effort, these two high-Reynolds-number applications are particularly relevant,
since high-fidelity wall-pressure measurements that are also spatially and temporally
well-resolved do not exist above moderate Reynolds numbers. Existing high-quality
wind-tunnel measurements are, to our knowledge, almost exclusively confined to
Reynolds numbers less than δ+ ≈ 1 × 104 (Farabee & Casarella 1991; Tsuji et al.
2007). Furthermore, only a subset of existing measurements used sensors having a
normalized sensor diameter (d+ = duτ/ν) less than about 50.

Evaluating the Navier–Stokes equation at a planar surface (herein taken to be the
x, z plane at y = 0) reveals that the instantaneous flux of vorticity from the surface is
directly related to the gradients of pressure in the plane of the surface (Lighthill 1963).
Specifically, evaluation of the streamwise, x, momentum equation at the surface leads
to a relation between ∂p̃/∂x and the flux of spanwise vorticity, ω̃z (tilde denoting an
instantaneous quantity, e.g. p̃ = P +p) (note that for the present flow ∂p̃/∂x = ∂p/∂x

and ∂p̃/∂z = ∂p/∂z).

∂p̃

∂x
= −μ

∂ω̃z

∂y
. (1.1)

Similarly, evaluation of the spanwise, z, momentum equation yields a relation between
∂p̃/∂z and the flux of streamwise vorticity, ω̃x ,

∂p̃

∂z
= μ

∂ω̃x

∂y
. (1.2)

Time-resolved surface pressure gradient data are considerably more scarce than
pressure data. Previously reported surface pressure gradient results are exclusively
from Andreopolous and co-workers, e.g. Andreopoulos & Agui (1996) and Honkan &
Andreopoulos (1997), who explored turbulent boundary-layer surface vorticity fluxes
over the range 1300 � δ+ � 2900. In these studies, they employed a square array
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of four flush-mounted microphones to obtain pressure fluctuation signals at four
adjacent points in the plane of the surface. The resulting simultaneous signals were
then differenced to estimate the streamwise and spanwise gradients of pressure. A
particularly notable and somewhat surprising result of these studies is that over the
indicated δ+ range both (∂ω+

x /∂y+)rms and (∂ω+
z /∂y+)rms exhibit a decrease from a

value near 0.065 to a value of about 0.02. These same data show only minimal
variation over the same range of δ+ when normalized using θ and uτ .

Further analyses by Andreopoulos & Agui (1996) also revealed that the high-
amplitude streamwise wall-vorticity flux fluctuations are correlated with high-
amplitude wall-pressure fluctuations, as well as with bipolar spanwise vorticity flux
fluctuations. This latter result led to the conclusion that the associated characteristic
vortical motions are mushroom shaped, and thus may have a connection to
observations indicating the existence of adjacent regions of positive and negative
spanwise vorticity in turbulent wall layers (e.g. Falco 1991; Klewicki et al. 1990;
Klewicki 1997; Klewicki & Hill 1998; Klewicki & Hirschi 2004; Wu & Christensen
2006; Natrajan, Wu & Christensen 2007).

The brief review above reveals that the understanding of both the wall pressure
and wall-pressure gradients would benefit from well-resolved data at large δ+. In the
present study, the characteristics of these pressure related quantities are studied at
δ+ ≈ 106. This is accomplished by probing the surface pressure fluctuations associated
with the near neutral atmospheric surface-layer flow over the salt playa of western
Utah, USA. The present results contribute to the understanding of boundary-layer
surface pressure by providing high-Reynolds-number high signal-to-noise ratio data
from sensors having good spatial and temporal resolution. We additionally present
well-resolved high signal-to-noise wall-pressure gradient statistics at Reynolds number
over two orders of magnitude higher than previous studies.

2. Experimental considerations
2.1. SLTEST facility

Fluctuating wall pressure was measured beneath the turbulent boundary layer
that devolops over the surface of the playa at the Surface Layer Turbulence and
Environmental Science Test (SLTEST) facility located on the Dugway Proving
Ground, Dugway, Utah, USA. This site is characterized by an extremely flat and
homogeneous terrain with wind patterns that are often consistent from day-to-day
(Metzger & Klewicki 2001; Klewicki & Metzger 2003; Priyadarshana & Klewicki
2004; Metzger, McKeon & Holmes 2007a). The SLTEST site environment is almost
entirely free from undesirable acoustic noise sources and, of course, completely devoid
of any facility vibration. The measurements presented herein were acquired during
field experiments in late May and/or early June 2003, 2004 and 2005. During early
summer, the moisture content of the playa produces maximal surface smoothness
while maintaining a structural integrity sufficient to support humans and equipment.
During measurement periods in the early evening the flow originated from the north
and developed over a fetch of about 150 km.

2.2. Experiment description and test conditions

Most of the data presented herein were acquired simultaneously with the experiments
of Priyadarshana & Klewicki (2004), Metzger (2006), Metzger et al. (2007a) and
Morris et al. (2007), and thus the overall documentation of the existant flow conditions
is considerable. The total duration of data runs selected for analysis is about 2.3 h.
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Figure 1. Inner normalized mean axial velocity profiles from hot-wire, sonic anemometry,
PIV and minisodar data collected at SLTEST. , Folz (1997); ∗, 6 element hot-wire (1999) in
Priyadarshana & Klewicki (2004); , Metzger & Klewicki (2001); +, Metzger et al. (2001);

, hot-wire wall rake (2002); �, hot-wire wall rake (2003); �, sonic anemometer (2003); �

�, Metzger et al. (2007a); �, PIV Morris et al. (2007); – , log law using coefficients of Coles
(1969); – – , log law using coefficients of Osterlund et al. (2000).

Arrays involving multiple microphones were, however, employed, and thus the total
duration of the individual pressure time series analysed is larger by at least a factor
of four. Statistics were computed for each data run and normalized using the friction
velocity value measured during that run (e.g. see Priyadarshana et al. 2007). Statistics
presented herein are the mean value of the ensemble of individual runs, and the error
bars quantify the data scatter within the ensemble. The previous SLTEST studies
cited above provide a detailed accounting of the data quality measures employed, and
provide a listing of representative integral parameters that describe the surface-layer
flow. During the acquistion runs, the average horizontal wind speed ranged from
about 2.5 to 5.5 m s−1 at 2.5 m above the surface. Friction velocity values typically
ranged between 0.2 and 0.35 m s−1 and the surface-layer thickness (δ) was estimated
to fall generally in the range between 60 and 100 m.

Figure 1 shows near-surface inner normalized mean velocity data. Most of these
were acquired during the same times as the present surface pressure experiments, but
at adjacent locations at the SLTEST site. These data are derived from near-surface
multisensor hot-wire probes, a vertical rake of hot-wire sensors, planar particle image
velocimetry, a tower-based sonic anemometer array and a minisodar (Priyadarshana &
Klewicki 2004; Metzger 2006; Metzger et al. 2007a; Morris et al. 2007). The data
exhibit the expected logarithmic-like variation with distance from the surface, as well
as a downward shift associated with surface roughness. From this downward shift, the
equivalent sand grain roughness, k+

s , was found to fall in the range 15 � k+
s � 85 for all

of the data runs considered herein. Mean velocity data derived from radiosonde and
minisodar measurements indicate that the inner normalized boundary-layer thickness
(top of the surface layer) varied in the range 8 × 105 � δ+ � 1.2 × 106 (Priyadarshana &
Klewicki 2004; Metzger et al. 2007a; Morris et al. 2007).

In order to best mimic isothermal flow conditions the measurements were acquired
in the near-neutral thermal stability time period that generally occurs near sunset,
between about 8:45 p.m. and 9:15 p.m. LST depending on the date. The influence
of thermal stability was assessed through the use of the Monin–Obukhov stability
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parameter, ζ = y/L, where y is the distance from the surface and,

L =
−u3

τ

κ(g/Θv)(vθv)w
, (2.1)

is the Monin–Obukhov length. In this expression, the subscript w denotes that
the quantity is evaluated in the immediate vicinity of the surface (according to
meteorological convention this typically means at a position about 2 m from the
surface), the overbar denotes time average, v and θv are the fluctuating vertical velocity
and virtual potential temperature, respectively, Θv is the mean virtual potential
temperature, κ is the von Kármán constant and uτ is the friction velocity ( =

√
τw/ρ,

where τw is the mean wall shear stress and ρ is the mass density). The condition |ζ = 1|
is typically interpreted as the non-dimensional height above the surface where the
buoyancy term and mechanical shear production term in the turbulence kinetic energy
equation are balanced. Negative values of ζ indicate unstable thermal stratification,
positive values indicate stable thermal stratification and ζ = 0 is the condition of
isothermal (neutrally stratified) flow. The data used in the present analyses were
acquired in the early evening period during which ζ passed through zero. For the
majority of these data the condition |ζ | � 0.1 was satisfied.

Sonic anemometer based measurements of ζ were acquired at at 2 m, 3 m and
5 m above ground level. Example stability plots relevant to the acquistion times
in 2004 and 2005 are given in Metzger et al. (2007a) and Morris et al. (2007).
Previous measurements indicate that thermal stability effects on turbulence structure
are undetectable to within the scatter of the data for a range of ζ near zero.
Even more specifically, Metzger (2002) (also see Klewicki & Metzger 2003) has
identified the time period near sunset during which ζ exhibits an approximately
linear temporal dependence as the optimum time to acquire data containing minimal
buoyancy effects. Additionally, numerous microphone measurement comparisons,
acquired before and after the period of linear ζ (t), indicate that the surface pressure
statistics and spectra are insensitive to small non-zero buoyancy effects. Under
significantly unstable conditions, however, buoyancy-induced features begin to appear
in the surface pressure spectra and autocorrelations.

The friction velocity (uτ =
√

τw/ρ, where τw = wall shear stress) was estimated
from a Reynolds stress measurement derived from a sonic anemometer positioned
at 2 m from the surface. Previous data reveal that under near-neutral conditions
these estimates are within about 10 % of those derived from a floating element drag
plate (Sadr & Klewicki 2000; Metzger 2002). In calculating an estimate for uτ , the
kinematic viscosity (ν � 1.85 × 10−5) was computed from the density, as derived from
the barometric pressure and temperature data, and from the dynamic viscosity, as
tabulated as a function of temperature.

2.3. Sensor resolution and signal characteristics

2.3.1. Resolving the wall pressure

Fluctuating surface-pressure measurements were simultaneously acquired from up
to ten microphones. One of the sensor configurations for experiments exploring
sensor spatial and temporal resolution is depicted in figure 2. A set of hot-wire probes
mounted at the rear of the measurement plate was also employed to acquire axial
velocity data simultaneously. Results from these velocity sensors will be presented
in a future paper. The wind vane situated atop the hot-wire stand was used to
visually align the array. This vane, along with the rotatable circular plate, facilitated
alignment prior to acquiring data for each run. Over the course of the study, a number
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Flow direction

Figure 2. Example arrangement of the microphone arrays. �, 23 Hz low-frequency cutoff
microphones; �, 0.07 Hz low-frequency cutoff microphones; �, 1 Hz low-frequency cutoff
microphones.

of experimental configurations were realized by rearranging the sensors and using
different rotatable plates.

Three different microphones were employed. The experimental configuration shown
in figure 2 included two 0.25 in Larson-Davis model 2250 microphones having a
frequency response between 23 Hz and 100 kHz, three 0.5 in Larson-Davis model
900B microphones having a frequency response between 1.0Hz and 100 kHz, and
four 0.5 in Bruel and Kjaer model 4193-L-004 microphones having a frequency
response between 0.07 Hz and 50 kHz. All of the 0.5 in microphones were fitted with
screw-on pinhole caps with 3 mm diameter holes at the top. These were employed
to reduce the effective sensing area. The caps were designed to have a Helmholtz
resonator frequency exceeding 40 kHz, i.e. well outside the frequency range of the
pressure fluctuations associated with the flow over the salt playa.

The signals from the microphones were digitized at a sampling frequency of either
5 kHz or 10 kHz, depending on flow speed. The present data required no additional
signal processing as they relate to mitigating the adverse effects of mechanical
vibration, electronic or acoustic noise. That is, the only step prior to data reduction
involved the conversion of the voltage output from the transducers to Pascals
through each transducer’s respective linear calibration. This lack of post-processing
is not typical since wall-pressure measurements often require the application of
noise cancellation and/or filtering to remove extraneous noise (Naguib, Gravante &
Wark 1996). Attributes of the current data are exemplified in the computed wall-
pressure frequency spectrum of figure 3. Remarkably, the spectrum from the 0.07 Hz
microphone produced over seven decades of signal amplitude above the noise floor.

Figure 3 also clearly reveals that the low-frequency cutoff of the transducer
significantly affects the capacity to measure the ∼f −1 region of the spectrum. Based
on estimates of the depth of the atmospheric surface layer, we may surmise that
the 0.07 Hz transducers capture the contributions from δ scale eddies. Specifically,
typical values for the surface-layer thickness, δ, and the mean velocity at y = δ are
100 m and 10 m s−1, respectively. Given these values, a δ-sized eddy advecting at U∞
would generate a frequency of about 0.1 Hz. Comparisons of the present data with
the model predictions of Panton & Linebarger (1974) (see § 3.1.2) further support the
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Figure 3. Frequency spectra of the surface pressure fluctuations as derived from the different
microphones. The indicated frequency refers to the low-end frequency limit inherent to the
microphone.
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Figure 4. Inner normalized wall-pressure intensities as a function of d+ �, 0.07 Hz transducer;
� and O, 0.07 Hz transducer high-pass filtered at 1.0 Hz, and 23 Hz respectively; ∗, 1.0 Hz
transducer; × , 23 Hz transducer. Note that the spread of the d+ values associated with the
0.07 Hz and 1.0 Hz pinhole sensors is representative of the d+ range associated with the
entirety of p(t) time series employed in the analyses of § 3.

conclusion that the present measurements capture a range of frequencies extending
from the high-end to below the peak. The effect of the low-frequency cutoff of the
microphones relative to the capacity to capture the full spectrum is clearly shown in
figures 3 and 4. The point in the spectrum where the low-end attenuation becomes
noticeable corresponds closely to the microphone cutoff frequencies of 1 Hz and
23 Hz, respectively. No relative attenuation at the high-frequency end of the spectrum
is apparent, even though the 23 Hz transducers had a sensing diameter over twice
that of the pinhole microphones.

Figure 4 shows the anticipated decrease in pressure intensity as the low-frequency
cutoff of the transducer increases. The data in this plot were simultaneously acquired
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Figure 5. Side-view schematic of the surface plug used to determine the in-plane pressure
gradients. Shown is a diametrical slice through two of the four pinhole microphones arranged
in a square pattern.

from the three different microphones for a series of runs. The 0.07 Hz transducer
intensities are seen to be about 1.4 times greater than those derived from the
1.0Hz microphones. The combination of microphones and pinhole arrangements
employed allowed issues relating to spatial and temporal resolution to be further
explored. Toward this aim, 1Hz and 23 Hz high-pass filters were applied to the
0.07Hz transducer data. This allowed the sensing capabilities of the 1 Hz and 23 Hz
transducers to be mimicked. As indicated, the data filtered at 1Hz nearly identically
reproduce the results from the 1 Hz pinhole microphones. High-pass filtering at 23 Hz
resulted in even further signficant attenuation in p′+, greater than 40 % relative to the
data filtered at 1 Hz. Owing, however, to the pinhole arrangement employed, the data
filtered at 23 Hz have a corresponding d+ ( = duτ/ν) that is smaller than that of the
23 Hz microphones. The data of figure 4 indicate only a slight ( ≈ 2 %) attenuation
in p′+ with increasing d+ for the range of d+ explored. This result at large δ+ differs
from the low δ+ findings of Schewe (1983) indicating considerable attenuation in the
measured wall-pressure intensity for 19 � d+ � 80. One possible explanation for this
is the fact that, unlike velocity or vorticity, the pressure fluctuations at a point result
from a weighted spatial integral. Thus, the present observations may reflect that the
vast majority of contributions to this integral in the SLTEST site boundary layer are
at scales much larger than the largest d+ represented in figure 4 (d+ ≈ 73). This, of
course, is not the case for the same d+ in low δ+ flows.

2.3.2. Resolving the wall pressure gradients

Estimates of the fluctuating wall-pressure gradients were derived in a manner
similar to that employed by Andreopoulos & Agui (1996) by finite-differencing the
pressure fluctuations simultaneously measured at four closely spaced points in the
plane of the surface. The wall-plug shown schematically in figure 5 was employed.
Pressure differentials associated with estimating ∂p/∂x and ∂p/∂z were taken over
the pinhole separation distance of 6.86 mm.

It is well-established that turbulence measurements are susceptible to probe
resolution effects (e.g. Johansson & Alfredsson 1983). Gradient measurements are
further challenged by their concentration of spectral intensity at higher wavenumbers
(Wyngaard 1969; Klewicki & Falco 1990). Consistent with this, Andreopoulos &
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Figure 6. Broadband advection velocities computed as a function of the sensor separation.

Agui (1996) found that at δ+ = 2075, increasing the sensor spacing, �x+, from 42 to
59 resulted in attenuation of the measured (∂p/∂x)rms by about 25 %.

Gradients were directly estimated by differencing the signals from a pair of the
0.07 Hz pinhole transducers for varying separation distance, and from pairs of the
0.07 Hz, 1 Hz and 23 Hz transducers at their minimum separation distances (6.86 mm,
6.86 mm and 8.3mm, respectively). Estimates of ∂p/∂x were also obtained through
the use of Taylor’s hypothesis. Consistent with the findings of Andreopoulos & Agui
(1996), the sensitivity of measuring ∂p/∂z to sensor resolution was found to be very
similar to that for ∂p/∂x.

The sensitivity of the estimated fluctuating pressure gradients to sensor spatial
separation could not be directly assessed for separation distances smaller than the
minimum, 6.86mm. Instead, effectively smaller separation distances were explored
indirectly through the use of Taylor’s hypothesis,

∂p

∂x
� − 1

Ua

∂p

∂t
. (2.2)

In this equation, Ua is the advection (propogation) velocity associated with the wall-
pressure-producing motions. Herein a single value of U+

a = 19 was employed. This
broadband estimate was derived from time-delayed spatial correlations. Specifically,
the microphone arrays could be distributed over the range of spatial separations
permitted by the size of the mounting plate (see figure 2). Axially aligning the array
allowed the construction of space–time correlations, Rpp(�x, �t). U+

a was calculated
by determining the first peak in the correlation between pairs of transducers separated
by a distance �x+ and the simple relation U+

a = �x+/�t+. The results of these
calculations are shown as a function of sensor separation in figure 6. These reveal
an increasing trend in Ua with increasing �x+ that is consistent with numerous
previous studies (e.g. Willmarth & Wooldridge 1962; Bull 1967; Blake 1970). For the
largest �x+ examined, the measured U+

a was 18.8. This is significantly larger than
the U+

a � 12 value reported in previous low-Reynolds-number studies (e.g. Schewe
1983; Choi & Moin 1990). When viewed relative to U∞, however, it is estimated
to be Ua/U∞ � 0.5, which is close to the value of 0.53 cited by Schewe (1983) for
high-amplitude events and within the range of 0.4 � Ua/U∞ � 0.8 given by Snarski &
Lueptow (1995). It is, however, smaller than the commonly cited Ua/U∞ � 0.8, for
smooth walls (e.g. Willmarth & Wooldridge 1962), or the value of Ua/U∞ � 0.73
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Figure 7. Attenuation in (∂p/∂x)rms as a function of the effective �x+ associated with the
use of Taylor’s hypothesis. �, directly estimated spatial derivative (�x+ = 93); �, Taylor’s
hypothesis method using a sliding polynomial; �, Taylor’s hypothesis method using a finite
difference.

found by Blake (1970) for rough-wall flows. Since the data of figure 6 are likely to
continue to increase for increasing �x+, the value of 19 employed herein is believed
to be a reasonable lower bound for U+

a .
Two different methods were used to estimate ∂p/∂t from the p(t) time series, (i ) a

five-point central difference, and (ii ) differentiation of a sliding five-point second-order
curve fit of the time series. Different values of �x were then explored (approximately)
by successively removing data from the time series at regular intervals. Examination
of time series (not shown) reveals that the Taylor-hypothesis-based signal contains
about the same high-frequency content and mimics the major features of the spatial-
difference-based estimate. With successive point removal, however, both the finite-
difference- and curve-fit-based time series lose high-frequency content. This is reflected
in figure 7, where the estimates for (∂p/∂x)rms consistently attenuate with increasing
effective �x+, �x+

e . For the smallest �x+
e accessible, the finite-difference- and curve-

fit-based methods yield nearly the same result, and with increasing �x+
e , the curve-fit

method has a significantly greater smoothing effect than the finite-difference method.
This is because the curve fit is not forced to pass through each data point, and
thus with increasing point removal, the peak-to-peak variations in the signal are
significantly attenuated.

Also note that the Taylor-hypothesis-based estimates for the minimum �x+
e are

in good agreement (±3 %) with the direct spatial derivative estimate associated with
an actual �x+ of about 93. A hypothesized explanation for this finds plausibility by
noting three observations: (i ) surface pressure intensity measurements in the present
high δ+ flow are largely insensitive to d+ for d+ � 75; (ii ) the attenuation of (∂p/∂x)rms

in figure 7 with increasing �x+
e is relatively small for the finite-difference method; and

(iii ) the peak contribution from the ∂p/∂x power spectrum to (∂p/∂x)rms occurs at
f + � 0.08 (see figure 18). The first of these leads to the expectation that the variation
in the pressure over a spatial increment of about 90 viscous units will be small at the
present δ+, and thus it is reasonable to expect that derivatives taken over such an
increment will provide a good approximation as well. The second observation supports
this in that the attenuation is relatively small. Indeed, it is likely that a good portion
of this attenuation can be attributed to the inadequacy of the Taylor’s hypothesis
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Figure 8. Frequency spectra of ∂p/∂z as derived from pairs of the three different
microphones.

approximation using a single advection velocity. Lastly, the third observation reveals
that the spectral peak occurs at an estimated advected streamwise length of about
285 viscous units. Thus, given the conservative nature of this estimate (owing to the
lower bound value of Ua employed), we can reasonably expect a spatial separation of
�x+ ≈ 90 to capture most of the derivative intensity.

Figure 8 shows power spectra of ∂p/∂z as simultaneously derived from pairs of
the 0.07 Hz, 1.0 Hz and 23 Hz microphones. For the particular data run shown, the
dimensional sensor scales correspond to �z+ =81, 81 and 98, respectively. As can be
seen, the variation in �z+ did not result in any detectable attentuation at the high-
frequency end of the spectrum, although it is apparent that the noise floor varies from
one transducer pair to the next. Because the pressure gradient signal has much more
of its spectral intensity concentrated at higher frequencies than does the pressure,
the inability to resolve the low frequencies indicated in figure 8 has a less dramatic
effect. Comparison of (∂p/∂z)rms computed using the 1.0Hz and 23 Hz microphone
pairs with the 0.07Hz microphone pair reveals attenuations of about 4.5 % and 17 %,
respectively.

3. Results
Results are organized relative to the statistics, correlations and spectral features

associated with the fluctuating wall pressure. This is followed by a similar presentation
relative to the fluctuating surface pressure gradients.

3.1. Pressure statistics and spectra

3.1.1. Wall pressure statistics

Numerous studies have explored the behaviour of the wall-pressure fluctuations.
Well-resolved wall-pressure measurements at δ+ = O(106) have not, however, been
previously reported.

Figure 9 compares the present wall-pressure intensity data at 8 × 105 � δ+ �
1.2 × 106 with data from previous low-Reynolds-number experiments. The single
data point from the present study represents the average of the ensemble of the
intensity values computed from the individual wall-pressure time series selected for
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Figure 9. Inner normalized wall-pressure intensities as a function of Reynolds number,
δ+. ∗, average of current data, vertical error bars represent ± one standard deviation of
the ensemble of measurements, horizontal error bars represent the estimated δ+ range;
�, Tsuji et al. (2007); �, Blake (1970); �, Morrison (2007); Morrison et al. (1992); �,
McGrath & Simpson (1987); 	, Horne (1989); �, Farabee & Casarella (1991); �, Bull &
Thomas (1976), (open pinhole); +, Schewe (1983); ×, Choi & Moin (1990); �, Lauchle &
Daniels (1987); —, equation (3.2); – – –, equation (3.1).

analysis. The horizontal and vertical error bars, respectively, represent the approximate
Reynolds-number range, and ±1 standard deviation of the sample scatter about the
mean. The mean value is p′+ = 4.98 at δ+ = 1 × 106. The substantial magnitude change
over the δ+ increment provided by the present experiments supports the conclusion
that this increase is statistically significant. Relative to the influence of a transitionally
rough wall, the results of Blake (1970) for fully rough flows reveal that p′+ can vary
significantly depending on both the roughness element size and spacing. Given that in
the present flow δ+/k+

s � 104, the vast majority of the sources to the surface pressure
come from well outside the roughness sublayer – a condition not necessarily true for
the same k+

s at lower δ+.
A number of arguments have been used to predict an increase in p′+ with

increasing δ+. Bradshaw (1967) used dimensional reasoning and/or the substitution
of universal range variables (τw and k1, the streamwise wavenumber) into the
Poisson equation for pressure to deduce the existence of an intermediate spectral
range where Φ(k1) ∼ k−1

1 . This leads to the prediction that the inner normalized
wall-pressure variance exihibits a logarithmic dependence on δ+, (p′+)2 ∼ log(δuτ/ν).
Panton & Linebarger (1974) arrive at the same prediction by formulating a Millikan-
type (Millikan 1939) overlap-layer hypothesis for the surface-pressure spectrum.
These and similar formulations are consistent with the empirical observation that
the (approximate) y and uτ scaling properties of the logarithmic-like portion of the
mean velocity profile correlate with the sources for the surface-pressure fluctuations.
Specifically, the inner normalized depth of this scaling layer increases approximately
logarithmically with increasing δ+. Farabee & Casarella (1991) capitalized on this
observation to predict the Reynolds-number dependence of p′+ by numerically
integrating estimated pressure spectra over the intermediate wavenumber range
corresponding to this layer. This resulted in (3.1), reflecting that the wall pressure
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Figure 10. Probability density function of the fluctuating wall pressure. —, present;
– – –, Tsuji et al. (2007), δ+ = 3826.

variance increases logarithmically with increasing δ+. The constants in this expression
are empirically determined from the relatively low δ+ data available to Farabee &
Casarella (1991). The results of figure 9 reveal that at δ+ = 1 × 106, the extrapolation
of (3.1) differs from the present data point by about one standard deviation of the
ensemble of p′+ measurements. Figure 9 also displays a modified version of (3.1)
(equation (3.2)), that has a different multiplicative constant. This equation more
accurately captures the Reynolds-number dependence indicated by the present data.

prms

τw

=

√
6.5 + 1.86ln

( δ+

333

)
, (3.1)

prms

τw

=

√
6.5 + 2.30ln

( δ+

333

)
. (3.2)

An example probability density function (p.d.f.) of the fluctuating wall pressure at
δ+ � 1 × 106 is shown in figure 10. The result from Tsuji et al. (2007) at δ+ =3826 is
included for comparison. On linear axes the present p.d.f. is indistinguishable from
that of Tsuji et al. (2007), while on semi-logarithmic axes some small deviations
in the tails of the distributions are evident. The logarithmic representation of the
p.d.f. clearly reveals a negatively skewed distribution. Results from previous low-
Reynolds-number experiments most prevalently indicate that S(p) = − 0.05 to −0.2
(e.g. Andreopoulos & Agui 1996; Snarski & Lueptow 1995). Schewe (1983) showed
that at δ+ � 600, measurements with sensors having a d+ greater that about 50 failed
to produce a negative S(p). (Note that because the pressure at a point results from
an integral over the half-space, a resolution of d+ = 50 at low Reynolds number
captures a significantly smaller fraction of the contributing motions than a d+ =50
resolution at high Reynolds number.) Schewe further revealed that high-frequency
high-amplitude negative events in the p(t) signal underlie the negative skewness. The
ensemble mean of the S(p) values derived from the present experiments is −0.11. As
shown in figure 4, for the present experiments d+ fell almost exclusively in the range
15 � d+ � 40. The ensemble mean of the computed fourth central moments of p(t) is
K(p) = 4.94. This value is also comparable to low-Reynolds-number results (Schewe
1983; Snarski & Lueptow 1995; Andreopoulos & Agui 1996). The logarithmic plot
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Figure 11. Outer normalized frequency spectra of the wall pressure; ——, present data
δ+ � 1 × 106; - - -, Farabee & Casarella (1991) δ+ = 2010; . . . , Tsuji et al. (2007) δ+ = 3822; �,
Morrison (2007) δ+ = 4956.

reveals that the p.d.f. of the surface pressure at high Reynolds number has significantly
non-Gaussian tails, and is slightly more negatively skewed than the p.d.f. of Tsuji
et al. (2007) at δ+ =3826.

3.1.2. Wall pressure spectra and correlations

Representing experimentally derived frequency spectra in terms of streamwise
wavenumber requires an expression for the advection velocity associated with pressure
producing motions, Ua = Ua(k1). Consistent with the concept that the streamise
wavenumbers associated with the boundary-layer motions scale inversely with their
positions from the wall, most existing data and supporting analyses indicate that
Ua approximately follows a negative logarithmic function of frequency (Panton &
Linebarger 1974; Panton & Robert 1994). Given that f = k1Ua(k1), it is a simple task
to represent frequency spectra from wavenumber spectra. Transforming frequency
spectra to wavenumber spectra is not as straightforward. Panton & Linebarger
(1974) note, however, if Ua(k1) is non-constant, the slope of the ∼k−1

1 region of the
wavenumber spectrum is preserved as an ∼f −1 region in the corresponding frequency
spectrum.

Panton & Linebarger (1974) also suggest that Reynolds-number effects are
minimized by plotting Φp(f )uτ/τ

2
wδ versus f δ/uτ . A representative pressure spectrum

from the present experiments is plotted in this manner in figure 11. As indicated,
greater than three decades of approximately −1 slope is present. A curve fit of these
data over 3.5 � log(f δ/uτ ) � 4.5 yields a value for the slope of −1.04. This value is
of higher magnitude than reported in most previous low δ+ studies (i.e. is closer to a
value of −1). The close correspondence to the −1 slope is also clearly reflected in the
pre-multiplied spectrum of figure 13.

The data of Farabee & Casarella (1991), Tsuji et al. (2007) and Morrison (2007)
at δ+ = 2010, 3822 and 4956, respectively, are also shown in figures 11 and 12.
Comparison reveals that under outer normalization, the peak in the spectrum from
the low-Reynolds-number studies is situated at about half a decade lower normalized
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Figure 12. Inner normalized frequency spectra of the wall pressure. Symbols as in figure 11.

frequency than the present spectrum. This would seem to indicate that under this
normalization the position of the peak exhibits a Reynolds-number dependence.
(Note that the peak in the present spectrum occurs at f > 0.07Hz, and thus its
position is not an artefact of the transducer cutoff frequency. Note also that the use
of δ+ = 8 × 105 rather than δ+ = 1 × 106 is insuffucient to account for the observed
shift in the peak.) The −1 region also tends to be less apparent in the low-Reynolds-
number data. Unlike most studies at low Reynolds number, the spectrum of Morrison
(2007) exhibits a slope close to −1. The more typically observed deviation from a
−1 slope is apparent in the inner-normalized spectra of Farabee & Casarella (1991)
and Tsuji et al. (2007). The latter of these exhibits a discernible region of −0.7 slope.
Overall, these data suggest that the slope of the constant slope region asymptotes to
a value close to −1 as δ+ becomes large, and that the spectral intensity of the −1
region increases with increasing δ+. Regarding this last point, it is relevant to note
that the p′+ value associated with the δ+ � 1 × 106 spectrum shown is 4.95, and thus
is representative of the mean of the ensemble of normalized pressure signals acquired.
(Recall that the ensemble mean p′+ value in figure 9 is 4.98.)

The roll-off at high frequency is similar between the high- and low-Reynolds-number
spectra. Buffer-layer contributions to the surface pressure have been associated with
a −5 slope in the pressure spectrum (e.g. Bradshaw 1967). At high frequencies, the
present spectrum transitions from a slope near −1 to something less than −6, and
thus there is a relatively small frequency band for which the slope is approximately
−5. This frequency band, however, is not distinctly apparent. A curve fit of the
present spectrum between 5.1 � log(f δ/uτ ) � 5.4 yields a slope of about −7. As
expected, when normalized by inner variables (figure 12) the present spectrum and
those measured at lower Reynolds numbers merge at high frequencies.

Overall, the present spectrum shows good qualitative and quantitative agreement
with the calculated spectra of Panton & Linebarger (1974). When plotted according
to the normalization of figure 11, their calculations predict a peak value close to
that shown. Similarly, based upon an extrapolation of their results, we should expect
about three decades of ∼f −1 behaviour; also in accord with the present data. Their
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Figure 13. Pre-multiplied spectrum of the wall-pressure fluctuations.

model also predicts that the low-frequency end of the spectrum rises above the f −1

line. The data of figures 11 and 12 do not readily indicate this behaviour. As figure 13
shows, however, the present data do exhibit this behaviour, but not as distinctly as
their model predicts. Possible explanations are that their model calculations are based
upon an irrotational and isothermal free stream, whereas the outer region of the
atmospheric surface layer is bounded by a turbulent ‘free stream’, and, even under
the near-neutral stability conditions, will contain motions that formed under unstable
conditions.

The autocorrelation of the wall-pressure signal, Rpp(�t), as derived from a 0.07 Hz
pinhole microphone, is shown for a variety of time-delay normalizations in figures 14
and 15. In figure 14, Rpp is plotted versus �t+ on semilogarithmic axes. One apparent
feature of this curve is that the first zero-crossing occurs at a time delay corresponding
to about 5000 viscous time scales. If this time is converted to a length, then the
corresponding advected length is about 0.1δ. Given that U+

a = 19 is estimated to be
a lower bound, we can conservatively estimate the advected length to be somewhere
between 0.1δ and 0.2δ. Another apparent feature of figure 14 is the approximately
logarithmic variation of Rpp over an extensive range of time delays; 20 � �t+ � 1000.
Relative to the spectrum of figure 11, this approximately corresponds to the −1
spectral region. Similarly, the ‘knee’ in the curve near �t+ = 10 corresponds to the
transition from the high-frequency portion of the spectrum (associated with the buffer
layer and below) to that associated with the logarithmic-layer motions. Lastly, it is
worth noting that the features exemplified in figure 14 were consistently revealed in
all of the Rpp examined.

Figure 15 explores alternative normalizations of the Rpp time delay. These include

�tuτ/δ, �tU∞/δ and �tuτ/2
√

νδ/uτ = �t+/2
√

δ+. The first of these is the inverse of
the outer normalization for frequency employed in figure 11. The second is an outer
normalization based upon U∞ and δ. The third is based upon uτ and an intermediate
length scale, 2

√
νδ/uτ . This length has been shown empirically to correspond to the

position of the peak of the Reynolds stress (Long & Chen 1981; Sreenivasan 1989),
and both empirically and analytically shown to be intrinsic to the scaling structure of
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Figure 14. Autocorrelation of the wall pressure versus inner-normalized time delay.

1.0

0.8

0.6

R
pp

 (Δ
t)

0.4

0.2

0.2 0.4
Δt U/δ

Δt Uτ/δ

Δt*/2(δ+)1/2

0.6 0.8 1.0

0

0

2 4 6 8 10 120

5 10 15 20 25(× 10–3)0
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the mean momentum balance (Wei et al. 2005). Relative to wall pressure, Bradshaw
(1967) draws a connection between this length scale and the centroid of the k−1

1

region of the wall-pressure spectrum. The position of the first zero-crossing occurs
at a non-dimensional time delay of about 5 × 10−3 for the �tuτ/δ normalization.
In contrast, the zero-crossing occurs near 0.2 and 2.5, respectively, for the �tU∞/δ

and �tuτ/2
√

νδ/uτ normalizations. Both of these normalizations are consistent with
the notion that the most appropriate normalization would place the zero crossing
at an O(1) non-dimensional time delay. Thus, the former suggests that the time to
the first zero-crossing has association with advecting O(δ) eddies, whereas the latter
suggests a connection with pressure sources characteristic of the k−1

1 portion of the
spectrum.

3.2. Pressure gradient statistics and spectra

3.2.1. Pressure gradient statistics

The predominant sources of time-resolved vorticity flux data are the relatively low
δ+ studies of Andreopoulos & Agui (1996) and Honkan & Andreopoulos (1997). A
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Study δ+ ν2

u3
τ

ν

uτU∞

√
νδ

uτ

θ 2

uτ

ν2

U∞u2
τ

√
ν2δ2

U∞u3
τ

W+

(
∂ωx

∂y

)+

rms

W+

p′+

(
∂p

∂z

)+

rms

AA96 1315 0.063 0.094 1063 0.0026 16.80 4.22 1.36
AA96 1472 0.058 0.090 1228 0.0024 17.09 3.97 1.26
AA96 1575 0.048 0.076 1168 0.0019 14.89 3.33 1.05
AA96 1750 0.035 0.058 1047 0.0014 12.19 2.47 0.76
AA96 1910 0.030 0.052 1069 0.0012 11.33 2.15 0.66
AA96 2075 0.021 0.037 928 0.0008 8.59 1.53 0.47

Present 1 × 106 0.038 1.06 20.4 × 106 0.001 1925 5.21 1.04

Table 1. Non-dimensional values of (∂ωx/∂y)rms according to various normalizations. In the
last two columns, the data are made non-dimensional using νW/u2

τ and W/p′, where W+ is
the inner normalized pocket width as given by (4.1), and the inner normalized wall-pressure
intensities were computed using (3.2). The data are from the present study and Andreopoulos &
Agui (1996).

primary objective of the present analysis is to use the vastly larger δ+ condition to
advantage in clarifying the scaling behaviour of vorticity flux intensities. Toward this
aim, a number of normalizations were explored by comparing our present results
with those of Andreopoulos & Agui (1996).

Vorticity gradients have the dimensions of frequency per length, and thus are
made non-dimensional via multiplication with a length squared over velocity. Given
this, combinations of candidate length and velocity scales were investigated. The
characteristic lengths considered were ν/uτ ,

√
νδ/uτ , δ and θ (the momentum deficit

thickness). The characteristic velocities considered were uτ and U∞. Table 1 presents
the non-dimensional values of (∂ωx/∂y)wall according to normalizations that use a
variety of combinations of these characteristic length and velocity scales. In general,
the normalizations sought are those that produce non-dimensional values that are
fixed for all Reynolds numbers and have an O(1) magnitude. In connection with
the (∂ωx/∂y)rms data of table 1, it is relevant to note that the normalized values of
(∂ωz/∂y)rms exhibit nearly identical behaviours.

When subjected to normalization by the two combinations of mixed variables
explored, ν/(uτU∞)

√
νδ/uτ and

√
ν2δ2/U∞u3

τ , the high- and low-Reynolds-number
data of table 1 exhibit a variation of about two orders of magnitude. Similarly,
the high-Reynolds-number data, when normalized by θ2/uτ , attains a value that is
about four orders of magnitude larger than the similarly normalized low δ+ data.
Per the analysis of Andreopoulos & Agui (1996) (and as reflected in table 1), this
normalization essentially removes Reynolds-number dependence over the relatively
low δ+ range of their study. In contrast, both the purely viscous normalization,
ν2/u3

τ , and the normalization, ν2/(U∞u2
τ ), result in values that are the same order of

magnitude at both high and low-Reynolds-number. As indicated by the tabulated
data and in the graphical representation of the viscous normalization in figure 16,
under these normalizations the low-Reynolds-number data still vary by a factor of
about three. One possible explanation for these observations is that under these or
other similar normalizations, the vorticity flux intensities undergo a rapid variation
at low Reynolds number and then attain an essentially constant value as δ+ becomes
large. Well-resolved data at δ+ = O(105) would go far in clarifying this issue. It is
additionally worth noting that none of the normalizations that use combinations of
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Figure 17. —, Probability density functions of the streamwise wall-pressure gradient
fluctuations; and - - - -, spanwise wall-pressure gradient fluctuations; �, streamwise wall-
pressure gradient fluctuation p.d.f. of Andreopoulos & Agui (1996).

the aforementioned length and velocity scales yield non-dimensional values that are
O(1) independent of δ+.

The probability density functions of the fluctuating wall-pressure gradients (surface
vorticity fluxes) shown in figure 17 are highly non-Gaussian. When plotted on linear
axes, the p.d.f.s of (∂p/∂x)wall and (∂p/∂z)wall are shown to be similar, each exhibiting
a relatively sharp peak about zero and long low-amplitude tails. These features are
consistent with the large kurtosis values of 8.6 and 8.0 for (∂p/∂x)wall and (∂p/∂z)wall ,
respectively. The logarithmic plot reinforces that the tails of the p.d.f.s are non-
Gaussian, and more clearly reveals that the (∂p/∂x)wall p.d.f. is negatively skewed
whereas the (∂p/∂z)wall p.d.f. exhibits a high degree of symmetry. These observations
are reflected in the measured skewness values of −0.7 and 0 for (∂p/∂x)wall and
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Figure 18. —, Inner normalized spectra (upper curves) and inner normalized pre-multiplied
spectra (lower curves) of the streamwise wall pressure gradient fluctuations, and - - - -, spanwise
wall pressure gradient fluctuations.

(∂p/∂z)wall , respectively. The skewness of the (∂p/∂z)wall p.d.f. is expected to be zero
in a two-dimensional mean flow. The negative skewness associated with (∂p/∂x)wall

indicates that high-amplitude events tend to favour the production of spanwise
vorticity having the same sign as the mean. For comparison, figure 17 also presents
the (∂p/∂x)wall p.d.f. data of Andreopoulos & Agui (1996), which is similar to their
(∂p/∂z)wall p.d.f. This p.d.f. exhibits a significantly lower peak value than the present, is
more broadly distributed around the peak, and is not appreciably skewed. Consistent
with these observations, Andreopoulos & Agui (1996) report skewness values of about
0 and −0.1 for (∂p/∂z)wall and (∂p/∂x)wall , respectively and kurtosis values between
3.6 and 4.2 for 1315 � δ+ � 2075.

3.2.2. Pressure gradient spectra and correlations

Inner normalized spectra and pre-multiplied spectra of the wall-pressure gradient
fluctuations are presented in figure 18. As indicated, the (∂p/∂x)wall and (∂p/∂z)wall

spectra are quite similar. The surface pressure gradient spectra reported by
Andreopoulos & Agui (1996) (not shown) are somewhat different. Specifically, their
results indicate that for frequencies below about f + = 0.1 both the (∂p/∂x)wall and
(∂p/∂z)wall spectra exhibit a nearly constant negative slope. When θ and uτ are
employed they show that the variation of their spectra is approximated by an
(f θ/uτ )

−0.75 dependence. The data in table 1 indicate that this normalization does
not account for Reynolds-number dependence when the present data are included.
Furthermore, while both the present (∂p/∂x)wall and (∂p/∂z)wall spectra show upward
trendencies at low frequencies, it is deemed unduly speculative to attach a slope to
this trend (i.e. a reasonable estimate is that these spectra are approximately flat for a
range of frequencies, f + < 0.1).

The pre-multiplied spectra of figure 18 reveal a peak near f + = 0.08. Furthermore,
the drop-off from this peak at both higher and lower frequencies is considerable.
Given that the area under pre-multiplied spectrum can be approximately interpreted
as a graphical depiction of the weighted (per frequency increment) contributions to the
signal variance, the results of figure 18 reveal that even at this high Reynolds number
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the motions involved in the surface flux of vorticity are confined to a relatively
narrow band of dynamically significant scales. The frequency associated with this
peak corresponds to an advected length of x+ � 285.

A number of statistical measures associated with the pressure and pressure gradients
were examined. Two of these are shown in figures 19 and 20. Others that are not
shown include the joint p.d.f. of ∂p/∂x and ∂p/∂z, and the cross-correlation between
∂p/∂x and ∂p/∂z as a function of time delay. Like the result of Andreopoulos &
Agui (1996), the joint p.d.f. of ∂p/∂x and ∂p/∂z exhibits essentially circular contours.
Similarly, the normalized time-delayed correlation of ∂p/∂x and ∂p/∂z essentially
displays a unity spike at �t+ = 0 and is otherwise zero. These findings indicate the
absence of a preferential statistical structure between ∂p/∂x and ∂p/∂z. Both of these
results are likely to be tied to the fact that the z-direction is one for which the flow
properties are statistically homogeneous.

Figure 19 shows the autocorrelations of ∂p/∂x and ∂p/∂z as a function of inner-
normalized time delay. For �t+ � 10 both of the curves in figure 19 are nearly identical
strongly decreasing positive functions. For greater time delays, the autocorrelation
of ∂p/∂z remains essentially zero, whereas the autocorrelation of ∂p/∂x exhibits a
distinctive negative peak at �t+ � 15. The advected length associated with this time
delay is �x+ � 285, and thus is the same as that associated with the peak in the
pre-multiplied spectra of figure 18.

Further clarification regarding the negative peak in the ∂p/∂x autocorrelation
is revealed in figure 20. This figure shows the normalized time-delayed correlation



216 J. C. Klewicki, P. J. A. Priyadarshana and M. M. Metzger

between the ∂p/∂x fluctuations and p itself. The resulting signature is characterized
by a relatively low-amplitude positive peak for negative time delays, followed by
a higher-amplitude negative peak for positive �t+. For larger time delays (both
negative and especially positive) the correlation exhibits lower-level negative values.
The rise toward zero for �t+ > 0 is quite slow, taking hundreds of viscous time
scales (not shown). In accord with the ∂p/∂x autocorrelation of figure 19, the time
delay between the positive and negative peaks is about 15 viscous time scales. From
these results, we can surmise that the underlying flow process is characterized by
an advecting and spatially localized pressure perturbation. In the case of a positive
pressure fluctuation, ∂p/∂x will be positive for negative times (upstream) and become
negative when the positive p perturbation begins to attenuate back toward zero. In
the case of a negative pressure fluctuation, the sign of the corresponding ∂p/∂x signal
is reversed. The low-level negative correlation suggests that the localized pertubation
is embedded in a larger-scale pressure event that is tending toward p =0; i.e. p is
either a decreasing positive value or an increasing negative value.

4. Discussion and conclusions
Measurements of the fluctuating wall pressure and its in-plane gradients were

made in the high-Reynolds-number turbulent boundary layer that exists over the salt
playa of western Utah, USA. The requirements for good resolution measurements
were clarified and the present pressure and pressure gradient measurements were
demonstrated to be well resolved. Many of the results relating to the pressure
fluctuations could be connected to low-Reynolds-number trends. Conversely, while
a number of normalizations for the surface vorticity flux intensities were explored,
and some were found to produce non-dimensional values that retained the same
order of magnitude over the 103 � δ+ � 106 range, none produced values that were
either O(1) or that convincingly connected the present results to existing low δ+

trends.
The fact that (∂p/∂x)rms � (∂p/∂z)rms is consistent with the lower δ+ results

of Emmerling (1973), indicating that surface-pressure perturbations initiate with a
nearly circular shape. Falco (1983, 1991) associates these perturbations with sublayer
pockets. In this context, it is relevant to note that the scale of the average inner-
normalized width of pockets, W , exhibits a logarithmic dependence on Reynolds
number over the range 1 × 103 � Rθ � 2 × 106 (Klewicki et al. 1995; Fershtut 2006;
Metzger et al. 2007b),

W+ = −17.5 + 24.2 log(Rθ ). (4.1)

This increase in scale with increasing δ+ is consonant with the present results indicating
that the surface-pressure gradient fluctuations at high Reynolds number can be
accurately estimated with larger inner normalized transducer separations than at
low δ+. Furthermore, at δ+ = 1 × 106 (Rθ � 2.5 × 106), (4.1) gives W+ = 137.3. The
typical pocket length, L, is about twice its width (Falco 1991), L+ � 275, and thus
is remarkably close to the characteristic scale associated with the present pressure
gradient fluctuations. These observations foster consideration of the following heuristic
scaling arguments for the pressure gradient intensities.

Existing evidence is that pocket formation is connected to some family of vortical
motions that come in proximity to the wall (e.g. Falco 1991; Smith et al. 1991).
Primary factors associated with the resulting scale and intensity of the surface-
pressure gradient perturbations are reasoned to include the characteristic vortical
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intensity of the initiating motion, its advective speed and angle with the wall. As a
first approximation, we hypothesize that the pressure gradient intensities scale with a
characteristic vorticity magnitude and a characteristic length. High-Reynolds-number
data indicate that both the spanwise and wall-normal vorticity component intensities
scale with wall variables (Priyadarshana et al. 2007), justifying use of u2

τ /ν as a
characteristic vorticity scale. The pocket width, W , is employed as the characteristic
length. The resulting normalized values are given in the eighth column of table 1.
Under this normalization, the previously noted inconsistency between the low δ+

data trend and the high δ+ data point persists, although the relative variation of
the low δ+ data is slightly reduced. Unlike inner normalization, however, use of W

and u2
τ results in O(1) values at all δ+. Clearly, scaling the characteristic vortical

motion source contributions to the wall pressure gradient intensities involves a more
complicated δ+ dependence than inner normalizaton alone. This point is reflected by
the fact that p′+ itself exhibits an unambiguous increase with δ+ (figure 9), and is
reinforced by considering a normalization that directly incorporates a characteristic
pressure and length scale. The last column of table 1 reveals that normalization by
W and p′ yields a slightly smaller relative variation of the low δ+ data, but clearly
does not remove the rapidly decreasing trend. All the data are O(1) under this
normalization, and at δ+ = 1 × 106 it yields a non-dimensional value very close to 1.0.
Overall, these heuristic analyses suggest that the Reynolds-number dependence of the
characteristic length scale associated with the surfac-pressure gradient fluctuations
is captured by the Reynold-number dependence associated with the sublayer
pocket motions. The complete scaling of the gradient intensities, however, remains
unclear.

Lastly, it is relevant to note that the wall gradient fluctuations of spanwise vorticity
in the present high-Reynolds-number flow are characterized by a rapid transition
between opposing sign extremes. This observation is in accord with the previous
low δ+ observations of Andreopoulos & Agui (1996), although the inner normalized
scale of these rapid transitions increases with Reynolds number. Relative to the
overall structure of the turbulent boundary layer, this represents a generic (essentially
unavoidable) mechanism by which spatially compact motions bearing opposing sign
vorticity are introduced into the flow. There is an enormous and ever-increasing body
of evidence that counter-rotating vortical motions factor significantly in the transport
mechanisms of the boundary layer, e.g. see the numerous references in Robinson
(1991) as well as Falco (1991); Klewicki et al. (1990); Klewicki (1997); Klewicki & Hill
(1998); Klewicki & Hirschi (2004); Wu & Christensen (2006); Natrajan et al. (2007).
Furthermore, given that a primary mechanism for pocket initiation is associated with
the presence of positive ω̃z close to the wall (note that the sign of the mean vorticity
is negative in the present coordinate system) (e.g. Falco 1991), this bipolar generation
of spanwise vorticity is also likely to be highly correlated with its own continual
regeneration. Such considerations naturally lead to the hypothesis that the specific
mixture and scale of positive and negative vorticity fluctuations is an irreducible
attribute of boundary-layer turbulence.
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